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What’s in the talk

Optimisation - some definitions
Traditional optimisation methods - minimisation and all that
Recent methods - annealing and genetics



The design process

Design is creating something to fit a purpose - from
toothbrushes to accelerators.
 A design is judged to be good by quantifying how good it is
compared to other designs.
The space of possible designs is termed the Configuration
Space.

Generally quantifiable via some variables.
The ‘goodness’ of the design is termed the Objective
Function.

Must be quantifiable if we wish to do an optimisation, but
can be a ranking scheme.



Optimisation

Optimisation is the improving of a design. This means either
maximising an Objective Function F, or equivalently
minimising - F
Division between Constrained and Unconstrained, and
Discrete and Continuous.
Constrained Optimisation means that the configuration
space is divided into Feasible and Non-Feasible solutions.
Strong link with mathematics of functions.



One Dimension (One Variable)



One Dimension

Analogous to root-finding
methods, e.g. dF/dz=0.
Many methods - Secant, Brent’s,
Newton-Raphson etc. Some (e.g.
Newton-Raphson) require
calculation of the local gradient
of the function.
All require the Objective
Function to be reasonably well-
behaved, e.g. smooth and roots
reasonably far apart.



Multiple Dimensions

The objective function can be thought of as a surface in two dimensions.
Higher dimensions can be thought of in an analogous way.



1Cauchy Method of Steepest Descent

Requires that the local gradient
of the objective function F can
be calculated in some way

Choose point P0

Move from Pi to Pi+1 by
minimising along the direction -
∇F

Use conjugate gradient method
to reduce number of steps



Cauchy Method of Steepest Descent



The Downhill Simplex Method (Nelder & Mead, 1965)

Simplex - geometrical figure in n dimensions, with n+1
vertices.

Triangle in 2 dimensions, tetrahedron in 3 dimensions…
Choose starting point P0, and create simplex by adding
each of the unit vectors ei  for each vertex.
Evaluate F  for each vertex. Choose new simplex.



Scaling values are used
to choose the expansion

and contraction rates

The Downhill Simplex Method (Nelder & Mead, 1965)





3Powell’s Direction Set Method (Powell, 1964)

Choose starting point P0, and set
of direction vectors ui =ei - e.g.
each of the parameters

Along each ui, minimise the
objective function F to give Pi

Cycle ui values, e.g. ui = ui+1

Set uN= PN - P0

Move PN to minimum along uN
and call it new P0



4Example - MAD Matching Module

Objective Function is called
Penalty Function, which is
minimised. Weighting is
accomplished by multiplying the
constraint by the weight in the
penalty function calculation.
Three methods used:

MIGRAD and LMDIF
calculate numerical
derivatives of either the
penalty function as a whole or
of each of the individual
constraints
SIMPLEX uses the Simplex
algorithm.



The Problem - Local vs. Global Minima

All of the previous methods are
Hill-Climbing strategies. Once
you’re on the top of the nearest
hill, you can’t get any higher.

Q: How do you find the highest
point?



Back to The Map Analogy



1Finding Global Minima - Random Search

Choose points randomly in the
configuration space.
Unintelligent, and rarely used by
itself.
However, it is useful for
comparing with other methods to
see if they’re working.
Of course, over a long enough
time the random search is
guaranteed to find the optimum
solution!



2Finding Global Minima - Stochastic Hill-Climbing

Instead of just climbing up the nearest hill and you can also
make random steps, retaining the move if the fitness is
improved.
Easy to implement and fast, but is ‘noisy’ if there are many
small peaks.



3Simulated Annealing (Metropolis, 1953)

Analogy with thermodynamics - a liquid cooled slowly forms
a large crystal where the atoms are nearly at their minimum
(optimum) energy state.
Key to optimisation process is slow cooling, where there is
time for movement to the lowest energy state - this is
annealing.
The previous methods correspond to quenching.



Simulated Annealing – Principles (Metropolis, 1953)

Boltzmann distribution gives probability of system being in a
state of energy E,

Simulated annealing gives probability of transition from
energy E1 to E2 with probability
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Simulated Annealing – Implementation (Metropolis, 1953)

The algorithm uses the following elements:
1. A definition of the configuration space.
2. A generator of random changes in the configuration.
These are the energy ‘options’ presented to the system.
3. An objective function E (analog of energy) to minimise.
4. A control parameter T (analog of temperature) and an
annealing schedule - how large and how often the
downward steps in T are.

High T gives high P of moving to a worse state - explores
configuration space.
Low T gives settling to final optimum.



Simulated Annealing: The Travelling Salesman Problem

A classic problem in optimisation
- how does the salesman travel
the least distance while only
visiting each city only once?

Shortest Hamiltonian Cycle
Start with an initial path and
perform changes to reduce
objective function.
With infinitely slow cooling the
shortest path is definitely found.
This class of problem is NP-
Complete

NP: Polynomial Time
The only sure solution is
exhaustive search.
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An Aside - DNA Computers

Adleman (1994) showed that
DNA computers can solve
complex problems requiring
extremely parallel processing.
The Travelling Salesman
problem is one of these so-
called NP-complete problems.
DNA pieces representing
possible steps are allowed to
combine in random sequences.
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Hamiltonian Cycle Problem -
going through every vertex with

the shortest path

A B



An Aside - DNA Computers

Every possible sequence is tried.
Sequences of short length (low M) and with the right start and end
points are selected for amplification (PCR). The final product shows the
shortest path.
This method scales to large numbers of steps which cannot be solved
on ordinary computers.

All possible paths Shortest Path



1Genetic Algorithms (Holland, 1975)

The concept is a Population of points in configuration
space.
Each point P is represented by a Gene

a binary representation which can be decoded to give the
Phenotype – i.e. the Point P (the ‘design’)

The Population is allowed to Evolve with interaction
between the individuals.
Eventually the population will Converge to a fitter region of
the configuration space.

This is how Nature does it!



Basic Genetic Algorithms

Evolution of the population proceeds through the following
steps:

Selection

Mutation

ReproductionEvaluation



Basic Genetic Algorithms - Reproduction

Reproduction proceeds through crossover:

1-point

2-point



Basic Genetic Algorithms - Mutation

Mutations are characterised by a Mutation Rate.

Mutation Point



Basic Genetic Algorithms - Selection

Selection can proceed in various ways:
1. Only the best children are kept (no parents kept).
2. Parents and children are ranked together, and only the
best are kept.
3. Each child is compared to the parent most like it (using
the Hamming Distance), which it replaces if it is better -
This method is called Niching.

Hamming distance is number of different bits – a distance
measure

The method of selection is important as it is obviously non-
stochastic. Selection gives pressure toward fitter regions of
configuration space.



Basic Genetic Algorithms - Convergence

The selection procedure and the mutation rate are
important for determining how fast the population converges
to a particular region of configuration space.
The convergence rate determines how much ‘variety’ is
tried.
Strong analogy with Simulated Annealing technique, and
with damping and excitation in phase space.
Selection is analogous to damping, mutation is analogous
to noisy excitation.



Basic Genetic Algorithms - Why they Work

Theoretical foundations well-established. Based on the idea
of a Schema - a section of the gene that codes for a
particular aspect of the phenotype.

Schema Theorem:
‘Short, low-order, above-average schemata receive
exponentially increasing trials in subsequent generations
of a genetic algorithm’

To get the best optimisation, the order of bits in the gene
representation should correspond to efficient schemas.

i.e. Need to code in a good way.



2Genetic Algorithms - Dealing with Numbers

Numeric parameters can be represented in binary form and
encoded into the gene.
However, ordinary binary representation means that
changing one bit has a larger effect than changing another
bit.
This is overcome using the Gray Code form of the binary
number.

A change in any single bit is equivalent to a change in
any other - consecutive numbers have a Hamming
Distance of one.



Gray Coding

Integer Binary Code Gray Code 
0 000 000 
1 001 001 
2 010 011 
3 011 010 
4 100 110 
5 101 111 
6 110 101 
7 111 100 

Neighbouring Gray codes have
a Hamming distance of 1.



Example: LHC Dipole Yoke Design

Russenschuck (1998) used
genetic algorithms to optimise
LHC dipole field quality by
changing coil and yoke
distributions.



Example: LHC Dipole Yoke Design

Surprising results obtained.
Alternatives found to previous 5
block designs with improved field
quality.

Population size of 60 used.
Gene length of between 50 and
60 bits.

Similar design process
performed for LHC quadrupoles.



Example: LHC Dipole Yoke Design

Optimising the distribution of the yoke material

Best at one energy (injection) Best over energy range



Example: LHC Dipole Yoke Design

Convergence to a fit population:



Example: DIAMOND Storage Ring Design

Partial cancellation of chromatic
sextupoles over 4 cells using
appropriate phase advances

4 families of harmonic
sextupoles to achieve full
cancellation

AP-SR-rpt-062 and -063
describe in detail

πµ 5=∆ x

πµ =∆ y



Sextupole Families

For this study, assumed 4
families of sextupoles
Compared with hand
optimisation

Long
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4
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Achromat Sextupoles



Defining the Objective Function

Calculating the full dynamic aperture too costly in time
Therefore define Objective Function F by:

Tracking 32 turns, on-momentum, in 1-D x and y
Find amplitude in x and y where stability <32 turns
Mean value is F.

Need to trust the objective function is related to the real
dynamic aperture (on- and off-momentum) that we are
interested in

i.e. Trust it is a real ‘Quality Factor’



Implementation of Genetic Algorithm

Use classical GA
4 sextupole strengths �  36 bit string representation
Population = 100
No. of generations > 200



Comparison with Hand Optimisation

By Hand Genetic

On-momentum

+4%

-4%

On-momentum

+4%

-4%



Quality Factors and All That

We can see that on-momentum, the performance of the
genetic optimisation is broadly similar.

Remember, there was no ‘intelligence’ behind the GA – it
started from completely random choices of sextupole
settings

Off-momentum the performance is similar but maybe not so
good.

We can see differences, the GA can’t
Moral - make sure the Objective Function has the following
properties:

Uses a true ‘Quality Factor’
Contains all the factors we care about



3Evolutionary Algorithms/Programs and Hybrid Systems

Often it is inconvenient to binary code numeric parameters.
Instead perform ‘genetic-like’ operations on parameter sets

Many different ways of doing this - called Evolutionary
Algorithms and other names.

Theoretical basis poor - but they work.

Hybrid Systems utilise GA or EA methods, and use
traditional optimisation (e.g. Simplex) to fine-tune the
solution.



Example – Finding an Isochronous Arc

4GLS ERLP requires an
isochronous arc
We can define the arc by a set of
assumed parameters:

Energy
Total Deflection Angle
Dipole and Quadrupole
Lengths
Outer Quadrupole Spacings

Then have free parameters:
L3

B1

B2, k1, k2, L1, L2, depend on
these for isochronous solution



First-Order Isochronous Equations



Optimisation by Direct Search

Some values of the free parameters have no solution
We also want a global view of the dependencies
Objective function is fast to calculate

e.g. Minimum of βx, βy

Direct search is therefore a good method
Explicitly calculate ALL solutions (over some grid of a
particular step size)
We then know we have the best solution



Isochronous TBA Results

A complete scan of all possible
solutions has been carried out:

0 m < L < 1 m
k1,k2 up to 5 m-1

Equal B1, B2

Assumed some lengths

k1
k2

k3k4



Finding the Optics Solution

For each Iso solution, scan k3/k4

Choose overall smallest betatron
sum
Starting solution for some field
Also done by scanning



Which Optimisation Method Is Best?

Genetic algorithms have distinct advantages over classical
single-point optimisation techniques for particular classes of
problems:

1. Best area of configuration space is not known
2. Many peaks/discontinuous Objective Function
3. Best solution not required - ‘good enough’ needed

Hybrid solutions are popular, combining several methods.
No particular algorithm is best in the general case.



No Free Lunch Theorem (Wolpert and Macready, 1995)

Important general theorem of search algorithms:
‘All algorithms that search for an extremum of a cost
function perform exactly the same, when averaged over
all possible cost functions.’

In other words, if algorithm A outperforms algorithm B for
some cost functions, then there must exist as many
functions where B outperforms A.
Corollary:

The Algorithm must be matched to the Problem.
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